Hyperbolic Geometry on the Unit Ball of B(h) and Dilation Theory

نویسنده

  • GELU POPESCU
چکیده

In this paper we continue our investigation concerning the hyperbolic geometry on the noncommutative ball [B(H)]−1 := n (X1, . . . ,Xn) ∈ B(H) n : ‖X1X ∗ 1 + · · ·+XnX ∗ n‖ 1/2 ≤ 1 o , where B(H) is the algebra of all bounded linear operators on a Hilbert space H, and its implications to noncommutative function theory. The central object is an intertwining operator LB,A of the minimal isometric dilations of A,B ∈ [B(H)]−1 , which establishes a strong connection between noncommutative hyperbolic geometry on [B(H)]−1 and multivariable dilation theory. The goal of this paper is to study the operator LB,A and its connections to the hyperbolic metric δ on the Harnack parts ∆ of [B(H) ]−1 . In particular, we show that δ(A,B) = lnmax n

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metric and periodic lines in the Poincare ball model of hyperbolic geometry

In this paper, we prove that every metric line in the Poincare ball model of hyperbolic geometry is exactly a classical line of itself. We also proved nonexistence of periodic lines in the Poincare ball model of hyperbolic geometry.

متن کامل

On characterizations of hyperbolic harmonic Bloch and Besov spaces

‎We define hyperbolic harmonic $omega$-$alpha$-Bloch space‎ ‎$mathcal{B}_omega^alpha$ in the unit ball $mathbb{B}$ of ${mathbb R}^n$ and‎ ‎characterize it in terms of‎ ‎$$frac{omegabig((1-|x|^2)^{beta}(1-|y|^2)^{alpha-beta}big)|f(x)-f(y)|}{[x,y]^gamma|x-y|^{1-gamma}‎},$$ where $0leq gammaleq 1$‎. ‎Similar results are extended to‎ ‎little $omega$-$alpha$-Bloch and Besov spaces‎. ‎These obtained‎...

متن کامل

Noncommutative Hyperbolic Geometry on the Unit Ball of B(h)

In this paper we introduce a hyperbolic (Poincaré-Bergman type) distance δ on the noncommutative open ball [B(H)]1 := n (X1, . . . ,Xn) ∈ B(H) n : ‖X1X ∗ 1 + · · ·+XnX ∗ n‖ 1/2 < 1 o , where B(H) is the algebra of all bounded linear operators on a Hilbert space H. It is proved that δ is invariant under the action of the free holomorphic automorphism group of [B(H)]1, i.e., δ(Ψ(X),Ψ(Y )) = δ(X, ...

متن کامل

An Extension of Poincare Model of Hyperbolic Geometry with Gyrovector Space Approach

‎The aim of this paper is to show the importance of analytic hyperbolic geometry introduced in [9]‎. ‎In [1]‎, ‎Ungar and Chen showed that the algebra of the group $SL(2,mathbb C)$ naturally leads to the notion of gyrogroups ‎and gyrovector spaces for dealing with the Lorentz group and its ‎underlying hyperbolic geometry‎. ‎They defined the Chen addition and then Chen model of hyperbolic geomet...

متن کامل

A survey of the role of hyperbolic geometry

We review how the hyperbolic geometry of the unit disk in the complex plane and of the unit ball in several complex dimensions comes into play in the theory of iteration of analytic maps.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008